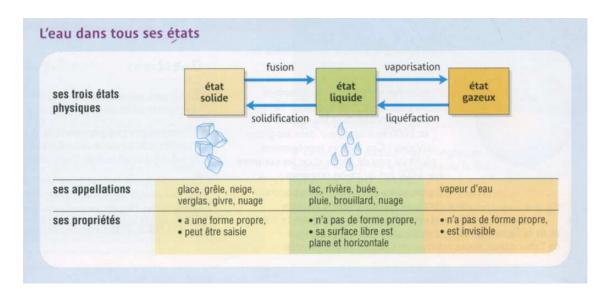
LES CHANGEMENT D'ETATS

Objectifs: - connaître le nom des changements d'états

- Savoir que lors d'un changement d'état la masse se conserve
- Savoir que lors d'un changement d'état le volume ne se conserve pas
- Connaître le symbole et l'unité de la température
- Connaître la température de solidification et de fusion de l'eau
- avoir tracer une courbe d'évolution de la température en fonction du temps

I) INTRODUCTION, RAPPEL

1) La température

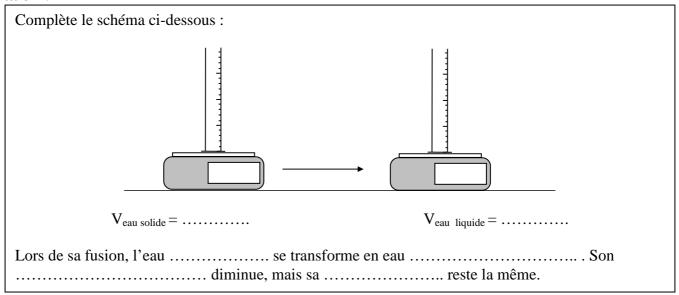

La température est un chiffre qui rend compte de l'état thermique d'un corps : est-il chaud ou froid.

L'échelle de température a été définie lors de la 9^{ième} Conférence générale des poids et mesures (CGPM), en 1948. Son nom est une référence à l'astronome et physicien suédois Anders Celsius, inventeur en 1742 d'une des premières échelles centigrades de température.

Cette échelle a été définie à partir de deux points remarquables :

- la fusion de l'eau : on pose que l'eau gèle à 0°C et
- la vaporisation de l'eau : on pose qu'elle bout à 100°C.

2) Les changements d'état rappel



II) CHANGEMENT D'ETAT ET VARIATION DE VOLUME

1) Histoire de gel et de plomberie

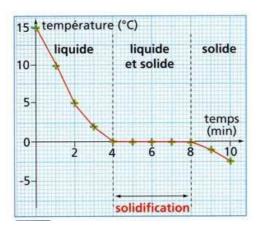
DEMI: pourquoi les canalisations d'eau éclatent pendant l'hiver:

observation:

2) Conclusion

Lorsque l'eau gèle et devient solide elle occupe plus de place : son volume augmente, mais sa masse reste la même.

En général, lorsqu'une substance se solidifie elle occupe moins de place : son volume diminue. Cependant ce n'est pas le cas de l'eau


Ainsi, de façon plus général : le changement d'état d'un corps pur sous pression constante se fait sans variation de masse (la masse reste la même) mais avec variation de volume.

III) EVOLUTION DE LA TEMPERATURE LORS D UN CHANGEMENT D ETAT

1) Travaux pratiques

Lors du TP, nous avons obtenu des courbes ayant le profil suivant :

Au départ l'eau a une température de 15 ° C, puis elle refroidit : sa température baisse jusqu'à 0 °C.

Lorsque l'eau liquide atteint 0 °C, sa température ne varie pas : elle se transforme en eau solide.

Lorsque l'eau s'est complètement solidifiée, sa température recommence à diminuer

Animation:

http://physiquecollege.free.fr/physique_chimie_college_lycee/cinquieme/chimie/solidification_cyclohexane.htm http://physiquecollege.free.fr/physique_chimie_college_lycee/cinquieme/chimie/solidification_eau_salee.htm http://physiquecollege.free.fr/physique_chimie_college_lycee/cinquieme/chimie/solidification_corps_pur.htm